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SUMMARY

Numerical methodologies for computer simulations of two-�uid �ows are presented. These method-
ologies fall into the category of volume tracking methods with piecewise-linear interface calculation
(PLIC). The scope of this work is limited to laminar �ows of immiscible, non-reacting, incompressible
Newtonian �uids, without phase change, in planar two-dimensional geometries. The following novel
or enhanced procedures are proposed: a parallelogram scheme for multidimensional advection of the
volume-fraction �eld; a circle-�t technique for the orientation of the interface segments and the
calculation of curvature; a novel contact angle treatment; and a staggered formulation for volumetric
body forces that can accurately balance pressure forces in the vicinity of the interface. In addition,
surface-tension-derived and hydrostatic-derived pressure adjustments are introduced as a means of
accurately calculating pressure forces in cells that contain the interface, so as to minimize the non-
physical �ows that a�ict many available volume tracking methods. The proposed method is validated
using four test problems that involve simulations of pure advection, a static drop, an oscillating bubble,
and a static meniscus. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulations of two-�uid �ows is an active area of research in computational �uid dynamics,
due to the prevalence of such �ows and the modelling challenges that they pose. For example,
droplet deposition, mould �lling, sloshing of liquids in containers or tanks, immiscible oils
�oating on top of or in water, droplet and bubble formation and breakup, and liquid jets
issuing into gaseous environments all involve two-�uid �ows with distinct interfaces that may
evolve with time, and all of these �ows continue to be di�cult to simulate accurately and
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e�ciently. Numerical methods for the simulation of such �ows can be categorized into two
broad groups: in one, the computational mesh is deformed or adjusted to �t the interface
between the �uids; and in the other, the mesh is kept �xed and a suitable technique is
employed to deduce and track the location of the interface. For reviews and descriptions of
several numerical methods for the simulation of two-�uid �ows and interface tracking, and
the associated terminology, the reader is referred, in chronological order, to the works of
Harlow and Welch [1], DeBar [2], Noh and Woodward [3], Hirt and Nichols [4], Youngs
[5], Hyman [6], Chorin [7], Fyfe et al. [8], Floryan and Rasmussen [9], Ashgriz and Poo
[10], Unverdi and Tryggvason [11], Brackbill et al. [12], Sussman et al. [13], Tsai and Yue
[14], Kothe [15], Pilliod and Puckett [16], Rudman [17], Mosso et al. [18], Rider and Kothe
[19], Bugg et al. [20], Wu et al. [21], Scardovelli and Zaleski [22], Gao [23], and Guey�er
et al. [24], among others.
The focus in this work is on volume tracking methods formulated to work with �xed

computational meshes. These methods are particularly well-suited for the modelling of two-
�uid �ows with gross interface deformations, such as folding and tearing. Rather than explicitly
track the interface, volume tracking methods evolve �uid volumes by initializing and updating
a volume-fraction �eld that identi�es the �uid contained in each computational cell, and
the interface is reconstructed from this volume-fraction �eld, as required. The reconstructed
interface is not unique, as it depends on the reconstruction techniques. The goal of this paper
is to present the formulations of several numerical techniques used in volume tracking methods
for the simulation of two-�uid �ows, including the e�ects of surface tension.
Most of the early volume tracking methods, such as the volume-of-�uid (VOF) method of

Hirt and Nichols [4], used relatively low accuracy (essentially �rst-order accurate), piecewise-
constant reconstruction techniques. DeBar [2] and Youngs [5] pioneered more accurate,
piecewise-linear interface calculation (PLIC) techniques for volume tracking, in which line
segments represent the reconstructed interface. In the 1990s, PLIC-based volume tracking
methods grew in popularity as their capabilities were enhanced, and as more of the related
research was published [10, 16, 19, 24].
While the latest PLIC methods are a great improvement over the piecewise-constant VOF

and early PLIC methods, further improvements are needed. One key issue for PLIC methods
is how best to reconstruct the interface from the volume-fraction �eld. It is essential that
the interface reconstruction closely approximates the actual interface, because the interface
topology directly in�uences volume-fraction advection and modelling of the surface tension
forces. Rider and Kothe [19] describe several di�erent approaches for performing this task,
including the error minimization method of Pilliod and Puckett [16, 25] and a least-squares
method based on the gradient of the volume fraction. The latter approach is of low accuracy,
however, while the former approach is of better accuracy but only practical on two-dimensional
orthogonal meshes [19]. In this work, a circle-�t technique is proposed and tested, and is
demonstrated to be of similar accuracy to the error minimization method. In addition, this
circle-�t technique can be used on non-orthogonal meshes.
Another issue is how to accurately update the volume-fraction �eld so as to match the

evolution of the �uids. The discrete volume fractions must not be allowed to smear across
many cells widths because that would increase the uncertainty in the location of the
interface. Consequently, volume tracking methods use geometric advection schemes, rather
than conventional algebraic advection formulas, to prevent numerical di�usion of the volume
fractions [26, 27]. Early volume tracking methods moved the �uid volumes via a series of
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A PLIC VOLUME TRACKING METHOD 1095

one-dimensional �uxes, advecting the �uid �rst in the x-direction and then in the y-direction,
for example, as in the methods of Noh and Woodward [3], Hirt and Nichols [4], and Lafaurie
et al. [28]. This type of operator-split advection, however, can produce spurious asymmetries
in the simulation and necessitate multiple interface reconstructions for each volume fraction
update. Thus, a multidimensional technique is preferable and such a technique is proposed in
this paper.
Another portion of this paper is devoted to an examination of the force balances across

the interface. Due to the abrupt changes in density, pressure, and surface tension forces
across the interface, numerical approaches akin to traditional �nite volume discretizations of
the conservation equations can lead to inaccurate numerical force balances, unless additional
measures are taken to model them accurately. The consequences of such improper force
balances are most evident at ‘steady state’ conditions, when the simulation exhibits non-
physical �ows and pressure gradients. Non-physical �ows obtained in numerical simulations
of physically static problems, called parasitic currents by Lafaurie et al. [28], have been
noted in many papers on volume tracking [12, 15, 24, 29, 30], in the context of surface-tension
dominated systems. These parasitic currents are produced by inaccuracies in both the surface
tension calculations and the force balances at the interface. Additionally, as the simulation
proceeds, the parasitic currents tend to grow in strength [15]. In this paper, new techniques
are presented to improve the numerical approximation of force balances near the interface so
as to reduce the parasitic currents. These techniques include the use of staggered body forces
(to better balance the staggered pressure gradients) and pressure adjustments (to improve the
accuracy of the numerically calculated pressure gradients).
The current work is limited to immiscible, non-reacting, constant-property Newtonian

�uids in laminar, isothermal, two-�uid �ows, without phase change. The proposed techniques
are developed and tested for such two-�uid �ows in planar two-dimensional geometries, on
structured, rectangular grids. However, these techniques are designed to be extensible to two-
dimensional axisymmetric meshes, as well as to unstructured grids. Indeed, they are developed
with the idea of eventually implementing them in a control-volume �nite element method
(CVFEM) [31–33], which uses unstructured meshes for simulations in irregular geometries.

2. GOVERNING EQUATIONS

In this work, the one-�eld model assumption is invoked, whereby each �uid is assumed to
move with the centre-of-mass of the aggregate �uid in a local control volume [15]. Under
this assumption, the �ow of both �uids is described by one velocity �eld and one pressure
�eld. Thus, a single set of governing equations describes the �ow of both �uids.
The stipulated �ow is governed by the continuity and conservation of momentum equations,

which may be written in Cartesian tensor notation as

@ui
@xi
=0 (1)

@
@t
(�ui) +

@
@xj
(�uiuj)=−@p

@xi
+
@
@xj

(
�

(
@ui
@xj

+
@uj
@xi

))
+ Sg; i + Sst; i (2)
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where t is the time, � is the density, ui is a velocity component, xi is the corresponding
Cartesian coordinate, p is the pressure, � is the dynamic viscosity, and i and j are
tensor indices. Sg; i is the volumetric gravitational force component equal to �gi, where gi is a
gravitational acceleration component. Sst; i is a volumetric force component that approximates
the e�ects of surface tension, as elaborated later in Section 2.1.
Volume tracking methods use a Heaviside unit function, f, hereafter referred to as an identity

function, to describe the layout of the �uid regions [19]

f=f(x1; x2; t)=

{
1 in Fluid A

0 in Fluid B
(3)

As the identity function evolves with the movement of the �uids, it is governed by the
following advection equation:

@f
@t
+ ui

@f
@xi
=0 (4)

The density and dynamic viscosity in Equation (2) are related to the individual �uid properties
via the identity function, as follows:

�=f�A + (1− f)�B; �=f�A + (1− f)�B (5)

where the subscripts A and B refer to the two �uids.

2.1. Surface tension

At the boundary between two �uids, a surface tension force exists due to an imbalance of
cohesive intermolecular forces at the interface [34]. The surface tension force can be expressed
in terms of components that are normal and tangential to the interface, as follows [12, 35]:

sst; i=��ni +
@�
@xi

(6)

where � is the surface tension coe�cient, � is the interface curvature, ni is the i-direction
component of the unit normal to the interface, and @�=@xi is the corresponding component of
the surface gradient of �. Note that sst; i is a surface force. In this work, � is assumed to be a
constant, so the second term on the right-hand side of equation (6) is zero. Thus the surface
tension force is simply

sst; i = ��ni (7)

In volume tracking methods, rather than treat the interface as a boundary in the �ow
system, it is subsumed into the domain by using the one-�eld model. Therefore, incorporation
of surface tension requires conversion of the surface force into a volume force. Based on the
continuum surface force (CSF) model of Brackbill et al. [12], the volumetric surface tension
force in Equation (2) is given by

Sst; i= sst; i�s (8)

where �s is a surface delta function. Thus, the surface tension is e�ectively smeared in a small
region about the interface; outside this region, Sst; i=0. A fuller discussion of �s is presented
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in Section 4.1. By substituting Equation (7) into Equation (8), the volumetric surface tension
force is expressed as

Sst; i=���sni (9)

2.2. Initial and boundary conditions

Initial values are speci�ed for velocity and the identity function (based on the known initial
distribution of the two �uids). Initialization of pressure is not required for the two-�uid �ows
considered here, as the density of each of the two �uids is assumed to be constant. All of
the walls are assumed to be rigid and impermeable, and the no-slip condition is applied at
their interfaces with the �uids. In addition, advantage is taken of any symmetries and periodic
behaviour in the �ow, to reduce the size of the solution domain.

3. NUMERICAL FORMULATION OF THE PLIC VOLUME TRACKING METHOD

A summary of the proposed discretization of the governing equations and discussions of some
novel techniques for the PLIC are presented in this section. The discretization is accomplished
with a co-located �nite volume method (FVM) [36–38] implemented, in this work, on an or-
thogonal rectilinear grid. A portion of this grid and related nomenclature are illustrated in
Figure 1. The calculation domain is �rst divided into rectangular control volumes, or cells,
and the grid points are placed at the geometric centres of the cells. Grid points are also placed

Figure 1. A portion of the grid and related nomenclature used in the FVM.
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1098 S. H. GARRIOCH AND B. R. BALIGA

at the points where the grid lines cross the domain boundaries. All dependent variables are
stored at the same grid points, or nodes, in the computational mesh.

3.1. Discretized momentum equations

With respect to the geographic node-labelling scheme given in Figure 1, the discretized
x-momentum equation is expressed as follows:

auPuP= a
u
EuE + a

u
WuW + a

u
NuN + a

u
SuS + b

u (10)

Following Patankar [36], the coe�cients in this equation are de�ned as

auE =DeA(|Pee|) +Max[−ṁe; 0]; auW =DwA(|Pew|) +Max[ṁw; 0]
auN =DnA(|Pen|) +Max[−ṁn; 0]; auS =DsA(|Pes|) +Max[ṁs; 0]

aoP =
�o�x�y
�t

; auP= a
u
E + a

u
W + a

u
N + a

u
S + a

o
P

bu =−
{
pE − pP
�xe

+
pP − pW
�xw

}
�x�y
2

+ (Mx + Sx)�x�y + aoPu
o
P

(11)

A fully implicit formulation is used here, so all variables are at the new time level (t +�t)
except for those with the superscript o, which are at the old time level (t). The designation
Max[a; b] indicates that the largest of the bracketed quantities should be used. Let ṁfc denote
the mass �ow rate through the cell or control volume (CV) face fc, Dfc be the di�usion
conductance for momentum across the cell face, and Pefc be the corresponding grid-related
Peclet number. Then, at the east CV face, for example, the following relations apply [36]:

ṁe=�eue�y; De=(�e�y)=�xe; Pee= ṁe=De (12)

The hybrid di�erence scheme was used to discretize the advection and di�usion terms at
the CV faces. Thus, as discussed by Patankar [36], the following expression applies for the
function A(|Pe|) in Equation (11):

A(|Pe|)=Max[0;−0:5|Pe|] (13)

In Equation (11), Sx is the total x-direction body force per unit volume, and Mx is related to
�nite di�erence approximations of the partial derivatives of the viscosity, �, and the velocity
components, u and v, that appear in the x-momentum equation

Mx=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�E − �P
�xe

+
�P − �W
�xw

) (
uE − uP
�xe

+
uP − uW
�xw

)

+
(
�N − �P
�yn

+
�P − �S
�ys

) (
vE − vP
�xe

+
vP − vW
�xw

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭
�x�y
4

(14)

A discussion of the evaluation of the density at the CV faces is deferred until Section 3.3,
as it is related to the advection of the volume fraction. The values of the viscosity at the CV
faces are calculated using a local resistance analogy [36]. At the east CV face, for example,
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the following equation applies:

�e= �xe

[
(�x)E=2
�E

+
(�x)P=2
�P

]−1
(15)

To avoid checkerboard pressure distributions in this co-located FVM, an adaptation of the
momentum interpolation scheme [38] is used to obtain the values of the velocity that appear
in mass �ow rate expressions at the CV faces. First, the discretized momentum equations are
rewritten as explicit expressions for the nodal values of the velocity components. For example,
the x-momentum equation (10) is rewritten as follows:

uP = ûP + duP

[
1
2

{
pE − pP
�xe

+
pP − pW
�xw

}]

ûP =
∑

nb a
u
nbunb + (Mx + Sx)�x�y + aoPu

o
P

auP
; duP=

�x�y
auP

(16)

In the calculation of the mass �ow rate ṁe, ue is approximated by linearly interpolating the
û and du values from the P and E nodes, and by employing the pressure gradient that exists
in the staggered CV between those nodes [38]

ue ≈ ûe + due
(
pE − pP
�xe

)
(17)

The discretized y-momentum equation is similarly derived and cast in a form akin to that of
Equation (10).

3.2. Discretized equations for pressure

The discretized equations for pressure are obtained by �rst integrating the continuity
equation (1) over the control volume surrounding each node, discretizing these equations,
and then substituting in them the expressions yielded by the momentum interpolation scheme
for the velocity components at the CV faces. The resulting discretized pressure equation for
the node P in Figure 1 can be cast in the following form:

aPPpP = a
P
EpE + a

P
WpW + a

P
NpN + a

P
SpS + b

P

aPE =due
�y
�xe
; aPW =duw

�y
�xw

; aPN =dvn
�x
�yn

; aPS =dvs
�x
�ys

aPP = a
P
E + a

P
W + a

P
N + a

P
S ; bP=(ûw − ûe)�y + (v̂s − v̂n)�x

(18)

3.3. Discretized volume tracking equations

3.3.1. Description of the volume fractions. Information regarding the �uid contained in a cell
can be obtained by integration of the identity function f de�ned in Equation (3)

F =
1

�x�y

∫
cell
f dx dy (19)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1093–1134



1100 S. H. GARRIOCH AND B. R. BALIGA

where F is the volume fraction of Fluid A in the cell. At the node within the cell, the density
and the viscosity are related to this volume fraction as follows:

�=�AF + �B(1− F); �=�AF + �B(1− F) (20)

In PLIC volume tracking, a single line segment represents the interface in each cell that
has F greater than zero and less than one. The equation for this line segment is given by

�x : n̂=� (21)

where �x is a point on the line, n̂ is the unit normal to the line, and � is the line constant [19].

3.3.2. Multidimensional advection of the volume fractions. In terms of the volume fraction,
Equation (4) is written in conservative form as

@F
@t
+

*
∇ :(F �u)=0 (22)

Integrating over the cell associated with the node P in Figure 1 and over the time-step, �t,
the discretized advection equation for F is given by

(Fn+1 − Fn)�A+ {(F ′
eue − F ′

wuw)�y + (F
′
nun − F ′

sus)�x}�t=0 (23)

where Fn+1 is the volume fraction at the new time level, t +�t, Fn is the volume fraction
at the old time level, t, �A is the two-dimensional cell volume (=�x�y), and F ′ denotes
volume fractions at the cell faces. The F ′ and velocities are all evaluated at the n+ 1

2 time
level, t + 0:5�t. Mosso et al. [39] found that this time-centred integration is necessary,
because forward Euler integration is numerically expansive and backward Euler integration is
contractive and, thus, both are unsatisfactory.
By rearranging Equation (23), the updated volume fraction is written in terms of the in�ows

and out�ows as follows:

Fn+1 =Fn −
(∑
fc
QfcF ′

fc

)/
�A (24)

where fc is a face of the current cell and Qfc is the �uid volume leaving the cell through face
fc (for in�ows, Qfc is negative). With respect to the notation in Figure 1

Qe= ue�y�t; Qw=−uw�y�t; Qn= vn�x�t; Qs=−vs�x�t (25)

For the �uid �ows of interest, the net out�ow from a cell is zero. Thus,

Qe +Qw +Qn +Qs=0 (26)

In the volume fraction update Equation (24), the F ′
fc terms are unknown. As discussed in the

introduction, volume tracking methods calculate these terms geometrically to prevent numerical
di�usion of the F �eld. For example, in the operator-split approach, in which unidirectional
�uxes are used, a rectangular swept volume is assumed to contain the �uid transported out
through the cell face. Note that this region is generically referred to as a ‘volume’ even though
it is an area in two-dimensions: thus, implicitly, a unit depth is implied. The contents of a
swept volume are determined from the position of the interface, as discussed by Rider and
Kothe [19].
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Figure 2. Swept volumes: (a) trapezoid; and (b) parallelogram.

Operator-split advection, however, can produce spurious asymmetries in the simulations.
Thus, a multidimensional technique is preferred. Unfortunately, determination of the F ′

fc is
more complex in multidimensional advection. Pilliod and Puckett [16, 25, 40] have developed
a second-order, but seemingly cumbersome, multidimensional advection technique. Rider and
Kothe [19] use a simpler, related technique in which trapezoidal swept volumes are used
to determine the �uxes between cells. As shown in Figure 2(a), the swept volumes in this
approach are trapezoids generated by tracing back from the end points of the cell face, based
on the velocities at local cell faces. In general, the trapezoid technique is more accurate than
the operator-split approach and, because it requires only a single reconstruction and advection
to update the F �eld, is more e�cient.
The trapezoid technique, however, experiences problems with mass conservation. These

problems can be manifested as an overshoot or undershoot in the volume fraction: that is, an
F value greater than one or less than zero. One source of these mass gains (or losses) is an
imbalance of in�ows and out�ows produced by the trapezoidal swept volumes. For example,
cell (i; j) in Figure 2(a) experiences an in�ow at its west face. The size of this in�ow should
be equal to u(i−1=2; j)�y�t, as given by −Qw in Equation (25), where u(i−1=2; j) is uw. This is
not the case, however, since the in�uence of the transverse velocities v(i−1; j+1=2) and v(i−1; j−1=2)

alters the size of the in�ow and, thereby, the amount of �uid entering cell (i; j). Thus, these
trapezoidal in�ows and out�ows cannot be expected to satisfy Equation (26). Rider and
Kothe [19] use a divergence correction term and volume fraction redistribution to reduce the
e�ects of these �ow inequalities, but these measures do not address the underlying problem.
To eliminate the �ow imbalance, the use of parallelogram swept volumes is proposed in this

work. Rather than use an individual transverse velocity to dictate the position of each side of
the swept volume, an average transverse velocity, v∗, dictates the shape of the parallelogram,
as shown in Figure 2(b). The area of a parallelogram is determined by the lengths of its
parallel sides and by the distances between those sides, and is independent of its skew.
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Figure 3. The polygons (Q; q; T; t) involved in the calculation of F ′
e for cell (i; j).

Thus, the area of a parallelogram swept volume is equal to the area of a rectangular swept
volume, as described in Equation (25), such that Equation (26) is satis�ed. Consequently,
with parallelogram swept volumes, the net out�ow from a cell is zero which eliminates the
aforementioned mass imbalance.
The volume fraction calculation for the parallelogram swept volume is similar to the

calculation for the rectangular swept volume. Consider, for example, an out�ow through the
east face of cell (i; j), represented by the shaded swept volume in Figure 3. The volume
fraction for this swept volume is given by

F ′
e=(Aq + At)=(AQ + AT ) (27)

where Aq, At , AQ, and AT are the areas of the polygons q1–q2–q3, t1–t2–t3–t4,
Q1–Q2–Q3–Q4, and T1–T2–T3, respectively. The average material density �uxed across
the cell face is calculated as follows: �e = �AF ′

e+�B(1− F ′
e). Such cell-face average densities

are needed for calculating the coe�cients in the discretized momentum equations; see, for
example, Equations (10)–(12).
While the use of parallelogram swept volumes ensures volume conservation, conservation

of mass can still be violated if the out�ows remove from the cell more of Fluid A or B
than is available. Speci�cally, because the swept volumes do not exactly abut one another, an
out�ow can remove �uid that neither resides in the current cell nor enters the cell, as shown
by the overhang regions in Figure 4. Also, within a cell, the out�ows can overlap, which
represents a double claim on the underlying �uid (Figure 4). These phenomena can produce
volume fractions greater than one or less than zero if an excess of Fluid A or B is taken by
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A PLIC VOLUME TRACKING METHOD 1103

Figure 4. Potential problem regions for the out�ows at the top and right faces of cell (i; j).

the out�ows. It is common practice in volume tracking methods to simply reset these values to
eliminate the overshoots and undershoots, but this e�ectively destroys or creates mass [4, 40].
Another approach is to redistribute �uid to neighbouring cells which, while conservative, is
inaccurate [35].
In this work, the F ′

fc values are iteratively scaled, if necessary, so that the amounts of Fluids
A and B taken from a cell cannot exceed the amounts entering and residing in the cell [41].
This adjustment procedure is performed on each cell that contains the interface and on each
cell that borders an interface cell. As any adjustment to the out�ows a�ects multiple cells,
in general, the entire procedure is repeated until no more modi�cations are required. With
this procedure, mass conservation is strictly enforced. Thus, the advection technique presented
here combines the accuracy of �ow-oriented swept volumes with a strict adherence to mass
conservation.

3.4. Piecewise-linear interface calculation

In PLIC volume tracking methods, a line segment de�ned by Equation (21) represents the
interface in each interface cell. These methods are di�erentiated by the procedures they use
to calculate the segment orientation, represented by n̂, and the segment position, given by the
line constant �. In this section, the details of the interface reconstruction are discussed.

3.4.1. Interface segment orientation: calculation of n̂. As line segments cannot provide an
exact representation of an arbitrary interface, a unique piecewise-linear representation does not
exist in general. The reconstruction must, however, closely approximate the actual interface for
accurate volume tracking, because the interface topology directly in�uences volume fraction
advection and the surface tension forces. Thus, an accurate n̂ calculation is critical to the
success of the volume tracking. In this work, it was decided that an acceptable method
should be at least second-order accurate. According to a criterion established by Pilliod and
Puckett [25, 16], a second-order reconstruction technique can exactly represent an arbitrarily-
oriented linear interface, that is, a linear interface which is not parallel to the mesh lines.
A circle-�t technique [41, 42] that satis�es this criterion was developed in this work.

Drawing on earlier work by Chorin [7] and Mosso et al. [39], this technique uses circles
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Figure 5. Illustration of the circle�t.

to orient the interface segments. With respect to each reference segment, the circle is �tted
through its midpoint and the midpoints of two of its neighbours, after selecting the two neigh-
bour segments from among those available. This circle �t provides not only a new orientation
for the reference segment but also the curvature of the segment. An example of the circle-�t
is shown in Figure 5.
An iterative algorithm for adjusting the reference segment orientation was designed as

follows:

1. Set initial n̂ for all interface segments using a least-squares method, such that
n̂=

*
∇F=|

*
∇F |, as discussed by Rider and Kothe [19].

2. Set the iteration counter to 1.
3. Consider an interface cell, whose segment has an orientation of n̂old, and its eight
surrounding neighbour cells in a 3× 3 cell block. This central segment is referred to as
the reference segment.

4. Select one neighbour segment on each side of the reference segment for use in the
circle-�t (see details in Section 3.4.2).

5. The three midpoints of the reference and neighbour segments uniquely de�ne a circle.
A new unit normal for the reference segment, n̂∗, lies on the line from the midpoint
of the reference segment to the centre of the circle. In this work, n̂ always points into
Fluid A, which may be inside or outside the circle in the reference cell. Thus, the proper
n̂∗ (pointing to or away from the centre of the circle) is chosen by maximizing its dot
product with n̂old.

6. Use a modi�ed regula falsi algorithm [43] to calculate n̂new based on n̂∗ and bracketing
values of n̂ (it was found that this algorithm works very well, but there may be other
equally suitable or more e�cient algorithms for this task).

7. Store n̂∗ as a bracketing value, if it improves over existing brackets of the regula falsi
algorithm.
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8. Calculate the curvature for the reference segment as the inverse of the circle radius.
9. Return to Step 3 for any unadjusted segments at this iteration level.
10. Update each interface segment, by setting n̂= n̂new and by recalculating �.
11. Increment the iteration counter. If any n̂ changed in direction by more than a prescribed

tolerance, return to Step 3 and sweep through each interface cell again.

This circle-�t technique, like the method of Mosso et al. [39], is second-order accurate.
Generally four or �ve iterations are needed before the segment orientations change by 0:001◦

or less, at which point the iterations are stopped. As segment orientation is tied directly to
the location of neighbouring segments, rather than to the underlying volume fraction �eld,
this circle-�t technique tends to keep the reconstructed interface smooth.

3.4.2. Neighbour segment selection. The proposed procedure for the selection of neighbour
segments will now be described; for details of the reasoning behind this procedure, the
interested reader is referred to References [41, 42]. In general, it is preferable to select those
neighbour segments that are closer to the reference segment, so that the circle more nearly
approximates the local interface shape. Neighbour selection is thus con�ned to the eight neigh-
bour cells surrounding the reference cell in the 3× 3 cell block.
The most appropriate neighbour segments should also provide a smooth transition to the

reference segment, as will now be described. Consider Figure 6 which shows two potential
neighbours, labelled 1 and 2, one of which must be selected for a circle �t with the reference
segment, labelled r. To measure the smoothness of the transition, a connector line is drawn
between the midpoints of the reference segment and its potential neighbour, as illustrated in
Figure 6. The angle between the connector line and the reference segment is given by

�i= cos−1(n̂c; i : n̂r) (28)

while the angle between the connector line and the neighbour segment is given by

�i= cos−1(n̂c; i : n̂i) (29)

where n̂c; i is the unit normal to the connector line to neighbour i; n̂r is the unit normal to
the reference segment, and n̂i is the unit normal to neighbour segment i. These angles are
summed and denoted by 	 as follows:

	i = �i +�i (30)

where 	i is a measure of the transition smoothness from the reference segment to neighbour
segment i. Generally, a neighbour segment is a better candidate for selection if it produces a
lower 	 and thus, in Figure 6, neighbour 1 should be selected over neighbour 2.
It is also better to avoid picking those neighbours which reside in cells with F close

to 1 or 0, as they are more likely to be in�uenced by numerical inaccuracies. Expressed
formally, the selection process should favour neighbours with F closer to one-half, which can
be measured as

Ftest = min(F; 1− F) (31)

Neighbours with higher Ftest are preferred.
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Figure 6. Example of the connector line angles used to select appropriate neighbours.

For the most accurate neighbour selection, the two selection criteria, based on a smooth
segment transition and Ftest, should be combined. Through numerous preliminary numerical
experiments, a good combination was found to be a minimization of (	=

√
Ftest).

Thus, selection of the two neighbours is performed as follows: the neighbour segments
are divided into left and right neighbours based on their positions relative to a normal line
passing through the midpoint of the reference segment. Then, on each side, the segment
with the smallest value of (	=

√
Ftest) is selected. To prevent neighbour selection �ipping,

whereby the neighbour selection continuously alternates between two or more segments and,
therefore, promotes instability, a tolerance is applied to (	=

√
Ftest). A tolerance of 6◦ was

found to work well.

3.4.3. Interface segment position: Calculation of �. With n̂ known, two related tasks are
frequently performed: given �, calculate F; and given F, calculate �. The �rst task requires
a single calculation of the fractional cell area cut by the interface segment, while the second
task uses the same calculation approach but normally requires a few iterations. The details
are available in the work of Rider and Kothe [19].

3.5. Solution of the coupled discretized equations

An outline of the overall iterative solution procedure at each time level is presented below:

1. Calculate the surface tension forces (details are given in Section 4).
2. Solve the discretized x-momentum and y-momentum equations.
3. Solve the discretized pressure equations.
4. Calculate the cell-face velocities using the momentum interpolation scheme.
5. Advect the F �eld (Equation (24)), reconstruct the interface, and calculate curvatures.
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6. Calculate � and � based on the new F �eld (Equation (20)).
7. If the u, v, and p �elds are not converged or mass is not conserved, return to Step 1.

This overall iterative solution procedure is an adaptation of the simultaneous variable
adjustment (SIVA) procedure [32, 33], which is based on ideas borrowed from SIMPLER
[36]. In Step 2 of this procedure, the discretized x- and y-momentum equations (linearized
and decoupled) are solved sequentially using a line-by-line tridiagonal matrix algorithm [36].
However, a more sophisticated iterative solver is needed for an e�cient solution of the
discretized pressure equations in Step 3: The solver used in this work is a multigrid
algorithm with a Gauss–Seidel smoother, both adapted from the work of Ferziger and
Peric [37].

4. NUMERICAL MODELLING OF SURFACE TENSION FORCES

4.1. Surface tension force

The derivation of the volumetric surface tension force was presented in Section 2.1. This
volumetric force, given by Equation (9), is repeated below

Sst; i=���sni (32)

The surface tension coe�cient, �, is a property of the two �uids involved, while ni is deter-
mined from the segment orientation as discussed in Section 3.4.1. Several di�erent forms of
� and �s are used in volume tracking methods.
One common way of calculating the curvature is as follows [12]:

�=−*
∇ : n̂ (33)

In this approach, n̂ is calculated using the gradient of F . Thus, the above equation e�ectively
involves second derivatives of F [22, 44]. This is problematic since the abrupt change in the
volume fractions across the interface generally makes it di�cult or impossible to accurately
support the second derivative stencils required to evaluate Equation (33). Thus, a smoothed
F �eld is usually employed to solve for � using Equation (33) [30, 45]. In addition, the
curvatures and surface tension forces are sometimes directly smoothed, to eliminate noise and
spurious values [30, 45].
In this work, the use of Equation (33) without any smoothing was found to produce

physically untenable results in surface-tension dominated �ows. Smoothing the F �eld
produces better results, but it obscures �ne interface details. For example, at a region of high
curvature, a large surface tension force should be generated that will tend to decrease the
interface curvature. With smoothing, however, the high curvature may be hidden or smeared
so that the associated large reaction force never materializes. Thus, smoothing can lead to a
fractured interface, in which the interface segments are disjointed. In addition, the interface
topology may be altered by the smoothing unless the grid resolution signi�cantly exceeds the
size of the smoothing �lter.
Consequently, an alternate approach was chosen in this work: the curvature is calculated

from the circle �t used to orient the interface segments, as suggested by Chorin [7]. The
radius of the circle is assumed to be equal to the principal radius of curvature of the interface,
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at the midpoint of the interface segment, from which the curvature is de�ned as [34]

�=1=R (34)

With this approach, the curvature is obtained from the circle-�t technique with almost no
additional e�ort. Furthermore, because no smoothing is involved, the connections between
neighbouring interface segments are strong such that, if one segment were to move out of
step with its neighbours, the resulting large curvatures and surface tension forces would work
to reduce the gaps between the segments. The proper sense of the curvature must be explicitly
assigned based on which side of the interface the circle �t lies. If the circle lies on the Fluid
A side, the curvature is positive; if it lies on the Fluid B side, the curvature is negative, and
a negative sign must be added to the right side of Equation (34).
The surface delta function in Equation (32) is responsible for smearing the surface tension

force in a compact region about the interface, thereby creating a volumetric force. In this
work, the surface delta function is chosen as

�s= l=�A (35)

where l is the segment length and �A is the cell area. Thus, the expression for the volumetric
surface tension force is given by

Sst; i=��(l=�A)ni (36)

Note that surface tension forces exist only in cells that contain the interface.

4.2. Contact angle treatment

In this work, a constant contact angle, �c, was imposed at the contact line formed by the
intersection of the two �uids and a solid surface. This approach neglects the fact that the
contact angle changes with the �ow conditions [44], but it produces stable simulations and at
least qualitatively accurate surface tension forces. For a discussion of other approaches, and
their advantages and drawbacks, the interested reader is referred to Zhuang et al. [46].
Before the contact angle can be imposed, the contact line must be located in the domain.

This is not an insigni�cant task since when the interface passes through a cell adjacent to the
wall, referred to here as a near-wall cell, it is not known a priori whether or not the interface
actually makes contact with the wall in that particular cell. Two simple rules are proposed
and used here to identify those near-wall cells that contain the contact line:

• If �c6 90◦ (wetting), the contact line exists in a non-empty, near-wall cell which is
adjacent to an empty near-wall cell;

• If �c¿90◦ (non-wetting), the contact line exists in a non-full, near-wall cell which is
adjacent to a full near-wall cell.

Once the contact-line cell is known, the question is how to impose the contact angle. One
possibility is to impose �c as the new orientation of the interface segment in the contact-
line cell. This approach, however, was found to be overly severe and intrusive, especially
with coarse grids. Since the surface tension force is directed normal to the interface segment,
applying the contact angle directly to the interface segment orientation can result in a
misdirected surface tension force. A better approach is to have the contact angle in�uence the
curvature calculation.
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Figure 7. The projected contact line.

Since the interface segment in the contact-line cell, hereafter referred to as the contact-line
segment, lacks a neighbour segment on the other side of the wall, the contact angle condition
presents a convenient opportunity for providing the second neighbour point for the circle-�t
technique of Section 3.4.2. The rationale for this approach is as follows: as the contact-line
segment is a piecewise-linear representation of the interface, its intersection with the wall
does not accurately represent the contact-line location. A more realistic contact-line position
can be projected by de�ning a curve that runs from the contact-line segment to the wall and
meets it at the prescribed contact angle, �c, as shown in Figure 7. This projected contact line
is then used as the second neighbour point for the circle �t of the contact-line segment and,
thus, it in�uences the curvature and orientation of the segment.
A parabola provides a simple means of projecting the contact line. The equation for the

parabola is given by

	= a2
2 + a1
+ a0 (37)

where the (	; 
) coordinate system is aligned with the contact-line segment and has its origin
at the midpoint of this segment.
The coe�cients of this equation are found by satisfying the following boundary conditions,

which are designed to provide a smooth transition between the contact-line segment and the
projected contact line:

1. The curve passes through the midpoint of the reference segment (
=0; 	=0). Thus, a0
equals zero.

2. The curve is tangent to the contact-line segment at the midpoint (
=0; d	=d
=0). Thus,
a1 equals zero.

3. The curve satis�es the contact angle �c at the wall.

The third boundary condition is used to solve for a2. Then, the intersection point between the
curve and the wall is determined. This intersection point is the projected contact-line location.
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Figure 8. A control volume staggered in the x direction.

5. STAGGERED FORCES AND PRESSURE ADJUSTMENTS

5.1. Staggered body forces

One cause of poor numerical force balances at the interface, in a classical FVM
formulation [36], is that the pressure gradients are de�ned between nodes, calculated as
the slopes of the piecewise-linear �ts between the nodal pressures, while the body forces
are cell-centred. Away from the interface, where �uid properties and �ow conditions change
gradually, this arrangement does not present a problem. Near the interface, however, this
numerical approximation of body forces as cell-centred values and pressure gradients as face-
centred values prevents exact balances of the body and pressure forces. Proper numerical force
balances are achievable only if the body forces, due to both surface tension (modelled here
as a volumetric body force) and gravity, are formulated at face-centred locations, in a manner
that is consistent with the treatment of the pressure gradients.
Consider the staggered CV located between nodes (i; j) and (i+1; j), as shown in Figure 8.

The cell faces are shown to have indices that are o�set from the nodal indices by 1
2 . Thus, this

staggered CV and its associated variables are denoted by the index (i + 1
2 ; j). The staggered

volumetric surface tension force is calculated by appropriately summing the cell-centred values
of this force that reside within this staggered CV. Based on Equation (36), the components
of this staggered volumetric force are given by

S(i+1=2; j)st; i =
(��ni)(i; j)l1 + (��ni)(i+1; j)l2
0:5(�A(i; j) + �A(i+1; j))

(38)

where l1 and l2 are the lengths of the portions of the interface segments in cells (i; j) and
(i+1; j), respectively, that reside in the staggered CV (i+ 1

2 ; j). These lengths are illustrated
in Figure 8.
The staggered volumetric gravitational force is calculated by �rst determining the �uid

density in the staggered CV, �(i+1=2; j), based on the current interface reconstruction. From
this staggered CV density, the components of the staggered volumetric gravitational force are
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calculated as

S(i+1=2; j)g; i =�(i+1=2; j)gi (39)

Thus, components of the total volumetric body force corresponding to the control volume
staggered in the x-direction are equal to

S(i+1=2; j)i = S(i+1=2; j)st; i + S(i+1=2; j)g; i (40)

This is the ith component of the body force, per unit volume, acting on the eastern half of
cell (i; j), and the western half of cell (i + 1; j). The ith component of the volumetric body
force corresponding to the control volume staggered in the y-direction, S(i; j+1=2)i , is similarly
derived, and it describes the volumetric body force acting on the northern half of cell (i; j)
and the southern half of cell (i; j + 1).
The staggered forces are easily accommodated in the numerical method presented in

Section 3. Basically, they are treated in the same manner as pressure gradients: whenever
the pressure gradients are used directly (such as in the calculation of velocities at the CV
faces), so are the staggered forces; when the pressure gradients are averaged over the CV, so
are the staggered forces in the x and y directions, and denoted as S̃ (i; j)x and S̃ (i; j)y , respectively.

5.2. Pressure adjustment terms

Despite the use of staggered body forces, force imbalances can persist in the numerical model
because, when the interface is present in a cell, a single nodal pressure cannot accurately
represent the average pressure at both the vertical face of a CV staggered in the x direction
and the horizontal face of a CV staggered in the y direction. Thus, in this work, separate
average pressures are calculated by de�ning two pressure adjustments for each cell, one for
the x-direction and one for the y-direction, which are added to the nodal pressure. The nodal
pressures are still solved for, using the discretized pressure equations given by Equation (18),
with some minor modi�cations as described later in this section.

5.2.1. Surface-tension-derived pressure adjustments. In this subsection, pressure adjustments
based on the pressure jump caused by surface tension are developed. Gravitational e�ects are
considered in the next subsection. For a staggered CV, the two important faces with respect to
the pressure adjustments are the ones parallel to the cell faces, which pass through the nodes
of the overlapped cells. As shown in Figures 8 and 9, for x-staggered CVs, these faces are
represented by vertical median lines, which divide the cells in half; it should be noted that
the median lines are horizontal for y-staggered CVs. The average pressure at an x-staggered
CV face can be de�ned as

p(i; j)avg; x=p
(i; j) + p′(i; j)

st; x (41)

where p(i; j)avg; x is the average pressure along the vertical median line in cell (i; j), p(i; j) is the
nodal pressure in cell (i; j), and p′(i; j)

st; x is the surface-tension-derived pressure adjustment for
the vertical median line in cell (i; j). If the interface does not cross the vertical median line,
then the nodal pressure is a good approximation to the average pressure on that line and p′(i; j)

st; x
equals zero. If, however, the interface does cross the median line, the pressure on a portion

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:1093–1134



1112 S. H. GARRIOCH AND B. R. BALIGA

Figure 9. Geometry for the surface-tension-derived pressure adjustment in the x direction.

of this line experiences a pressure jump of ±��. The appropriate pressure adjustment must
spread this pressure surplus or de�cit along the length of the vertical median line, as follows:

p′
st; x=±��rml (42)

where rml is the fraction of the median line that lies on the opposite side of the interface
from the cell node. Using the notation of Figure 9, this fraction is calculated as

rml = min
(
y( j+1=2) − ycross

�y
;
ycross − y( j−1=2)

�y

)
(43)

where y( j+1=2) and y( j−1=2) are the locations of the top and bottom cell faces, respectively,
and ycross is given by the intersection between the interface segment and the vertical median
line. The minus sign is used on the right-hand side of Equation (42) if the node lies in Fluid
A, that is, if n̂ points towards the node; otherwise, the plus sign is used.
The pressure adjustment for the y-direction, p′

st; y, is calculated similarly, using the horizontal
median line. Both pressure adjustments are zero in all non-interface cells. Within an interface
cell, p′(i; j)

st; x is zero if the interface segment does not cross the vertical median line, as is p′(i; j)
st; y

if the interface segment does not cross the horizontal median line.
To demonstrate the e�ectiveness of the staggered force formulation and the pressure adjust-

ments, a system containing a nominally static drop is simulated. The initial �uid con�guration
consists of a circular region of Fluid A, with a radius of 0.24m, centred in a 1:0m× 1:0m
domain and surrounded by Fluid B. Initial velocities are zero and gravity is absent. Both
�uids have the same � and � values, here set similar to those of air, but the surface tension
coe�cient at the interface is speci�ed to be 0.0728N/m. The simulation is performed on a
40× 40 uniform mesh, with no-slip boundary conditions at the walls (outer boundaries of the
calculation domain), and a time-step of 0.05 s.
Results of the simulation after 20.0 s are shown in Figure 10. On the left side are three-

dimensional plots of the mesh with pressure, in Pascals, used as the z-value, while velocity
vector plots are presented on the right side. In Figure 10(a), results obtained with the tradi-
tional co-located FVM formulation presented in Section 3, without staggered forces or pressure
adjustments, are shown. This formulation gives rise to large non-physical pressure variations
inside and outside the drop, and asymmetries are also evident due to poor convergence at
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Figure 10. Pressure and velocity vector plots for the static drop simulations: (a) traditional formulation;
(b) staggered-force formulation; and (c) staggered-force formulation with pressure adjustments.
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some times. In addition, the velocity vector plot indicates that the levels of �ow are sig-
ni�cant throughout the domain and are especially strong near the interface. This �ow is an
example of the parasitic currents [28, 29] described in the introduction to this paper. They are
produced by imbalances between the surface tension and pressure forces at the interface.
Volume tracking researchers who use this traditional formulation often rely on smoothing

of the surface tension force to reduce the parasitic currents [24, 29]. Smoothing provides only
limited relief, however, and smears the pressure change across the interface, usually over
several cell widths [35]. By contrast, in this work, the staggered forces and pressure adjust-
ments are formulated and employed to directly reduce the force imbalances, while maintaining
the abrupt pressure change across the interface.
Now consider the results of the simulations with the staggered-force formulation, shown in

Figure 10(b). With this formulation, the non-zero pressure gradients are largely con�ned to the
cells near the interface and the parasitic currents are signi�cantly reduced. By also employing
the pressure adjustments, virtually uniform pressure is obtained both inside and outside the
drop, as is evident from the results shown in Figure 10(c); furthermore, the parasitic currents
are reduced to comparatively insigni�cant levels.
Thus, it is seen that the staggered forces and surface-tension-derived pressure adjustments

are capable of enabling highly accurate force balances. The degree to which the pressure
adjustments are e�ective can vary depending on the quality of the curvature calculation, but
they generally prevent the appearance of jagged pressure pro�les and strongly inhibit parasitic
currents.

5.2.2. Hydrostatic-derived pressure adjustments. An abrupt density change across the inter-
face can also produce force balance de�ciencies in the presence of a gravitational �eld. In
this subsection, hydrostatic-derived pressure adjustments are developed to improve the force
balances. In this development, surface tension e�ects are ignored, as they were already
considered in the previous subsection.
Consider the pressure variation on the vertical median line through cell (i; j), shown in Fig-

ure 11. A local vertical coordinate, y∗, is de�ned with its origin at the centre of the cell. Using
ideas akin to those used in the development of pressure adjustments in the last subsection,
the hydrostatic-derived pressure adjustment in the x-direction, p′(i; j)

hy; x , is added to the nodal

pressure, p(i; j), to obtain the average pressure over the vertical median line, p(i; j)avg; x, as follows:

p(i; j) + p′(i; j)
hy; x =p

(i; j)
avg; x (44)

Figure 11. Geometry for the hydrostatic-derived pressure adjustment in the x direction.
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The average pressure is obtained by integrating the pressure along the median line

p(i; j)avg; x=
1
�y

∫ �y=2

−�y=2
pml dy∗ (45)

where pml is the local pressure along the median line. This local pressure can be approximated
in terms of the nodal pressure and the hydrostatic pressure variation in the following manner:

pml =p(i; j) +
∫ y∗

0
�mlgy dy∗ (46)

where �ml is the local �uid density along the median line and, thus, equals �A or �B at any
given point on the line.
Equation (46) is substituted into Equation (45), and the result into Equation (44), to obtain

p(i; j) + p′(i; j)
hy; x =

1
�y

∫ �y=2

−�y=2

{
p(i; j) +

∫ y∗

0
�mlgy dy∗

}
dy∗ (47)

As the nodal pressure, p(i; j), is treated as having no spatial dependence in a given cell, it can
be removed from the integral on the right-hand side, and thus it cancels the identical term on
the left-hand side. The remaining terms de�ne the hydrostatic-derived pressure adjustment in
the x-direction, as follows, noting that gy is assumed to be constant:

p′(i; j)
hy; x =

gy
�y

∫ �y=2

−�y=2

{∫ y∗

0
�ml dy∗

}
dy∗ (48)

The solution to this double integral has two di�erent forms, depending on whether the
interface segment crosses the median line above or below the node. The location of the
intersection point is represented by y∗

cross. If y
∗
cross¿0:

p′(i; j)
hy; x =

gy
�y

⎧⎪⎨
⎪⎩
1
2
�u((y∗

top)
2 − (y∗

cross)
2) +

1
2
�b((y∗

cross)
2 − (y∗

bot)
2)

+ (�b − �u)y∗
cross(y

∗
top − y∗

cross)

⎫⎪⎬
⎪⎭ (49)

where �u and �b are the densities of the �uids in the upper and lower parts of the cell, with
respect to the interface, respectively, and where y∗

top =�y=2 and y
∗
bot =−�y=2. If y∗

cross¡0,
the third term in between the braces in Equation (49) changes, as follows:

p′(i; j)
hy; x =

gy
�y

⎧⎪⎨
⎪⎩
1
2
�u((y∗

top)
2 − (y∗

cross)
2) +

1
2
�b((y∗

cross)
2 − (y∗

bot)
2)

+ (�u − �b)y∗
cross(y

∗
cross − y∗

bot)

⎫⎪⎬
⎪⎭ (50)

The x-direction hydrostatic pressure adjustment is non-zero only if the interface crosses the
median vertical line and if, as formulated in Equations (49) and (50), the two �uid densities
are di�erent. As with the surface-tension pressure adjustments, the hydrostatic pressure adjust-
ments are zero in the non-interface cells. The y-direction hydrostatic pressure adjustments,
p′(i; j)
hy; y , are found similarly and result in equations of the same form as Equations (49) and
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Figure 12. Interface of hydrostatic air–water system: (a) with hydrostatic pressure adjustments;
and (b) without hydrostatic pressure adjustments.

(50), except that all y’s on the right-hand sides are replaced with x’s, and the upper and
lower densities are replaced by eastern and western densities, respectively.
To demonstrate the e�cacy of the hydrostatic pressure adjustments, a static air–water system

in a domain tilted at 20◦ to the horizontal is simulated. The domain has dimensions of
1:0m× 1:0m, is bounded by solid walls, and is discretized with a 20× 20 mesh of uniform
cells. The initial conditions are hydrostatic and a time-step of 0:001 s is used. The gravitational
acceleration is 9:81m=s2, and the surface tension is neglected.
This simulation is run to t=0:1 s, with and without the hydrostatic pressure adjustments,

but always with the staggered-force formulation. As shown in Figure 12, a continuous linear
interface is maintained when the hydrostatic pressure adjustments are used while, without
these pressure adjustments, the interface is fractured. Thus, the need for hydrostatic pressure
adjustments in order to accurately represent a static �uid system is clear. These adjustments are
also appropriate for dynamic simulations, provided that the �uid acceleration is small compared
to the gravitational acceleration, in which case Equation (46) is a reasonable approximation.
If not, the hydrostatic pressure adjustments can be disabled.
Although the calculations of the surface tension and hydrostatic pressure adjustments are

not especially demanding, the additional coupling that the adjustments introduce between the
interface reconstruction and the pressure �eld can increase the number of iterations required
per time-step and, thus, the overall simulation run-time. This additional cost, however, is
justi�ed by the better behaved and more accurate simulations that are obtained.

5.2.3. Implementation of the pressure adjustments. The pressure adjustments are integrated
into the numerical formulation described in Sections 3.1 and 3.2 in a straightforward
manner. The adjustments p′(i; j)

st; x and p′(i; j)
hy; x are calculated from Equations (42), (43), (49), and

(50), while p′(i; j)
st; y and p′(i; j)

hy; y are calculated from the equivalent equations for the y-direction.
During the overall iterative solution procedure, these adjustment terms are moderately under-
relaxed (typically, the under-relaxation parameter �=0:7), as are the surface tension forces
and the momentum equations, to improve the stability and convergence properties of the
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simulation. After these adjustments are calculated, they are summed to create a combined
pressure adjustment for each direction as follows:

p′
x=p

′
st; x + p

′
hy; x; p′

y=p
′
st; y + p

′
hy; y (51)

Thus, a set of pressure and pressure adjustment values, p, p′
x, and p

′
y is available for each

cell in the calculation domain.
The pressure adjustments are incorporated into the discretized equations by replacing p

with p + p′
x for the calculation of pressure gradients in the x-direction, and with p + p′

y
for the calculation of pressure gradients in the y-direction, immediately following the FVM
discretization of the governing equations. To calculate the velocities at the cell faces, the
pressure adjustments are included in the calculation of the pressure gradients for the staggered
CVs. With respect to the discretized equation for pressure, the nodal pressures are treated as
unknowns, and the pressure adjustments are lumped into the constant.

6. TEST PROBLEMS

6.1. Pure advection

Rider and Kothe [19, 47] have proposed four test cases, all involving pure advection (no
di�usion and no surface tension), for evaluating the accuracy of interface tracking techniques,
one of which is considered here. Discussions of the application of the proposed method
to all four of these test cases and the results, for a range of parameters, are available in
References [41, 42]. These test cases check the ability of the proposed method to not only
translate an interface, but also to stretch and tear it in the presence of vortical �ow. The
velocity �eld is prescribed in each test case so that the properties of the �uids, other than their
identities, are unimportant. Thus, these tests gauge the accuracy of the interface reconstruction
techniques and the advection of the volume-fraction �eld (F).

6.1.1. Test description. This test is conducted on a 1:0m× 1:0m domain and Fluid A is
initially in the shape of a �lled circle of radius 0.15m, centred at (0:5m; 0:75m), and the
rest of the domain is considered to be �lled with Fluid B. The prescribed �ow �eld consists
of a complex deformation �eld produced by a 4× 4 array of symmetrical, counter-rotating
vortices, which is described by the following velocity components [19]:

u= sin{4�(x + 0:5)} sin{4�(y + 0:5)} cos(�t=T )
v= cos{4�(x + 0:5)} cos{4�(y + 0:5)} cos(�t=T )

(52)

In this equation, the trailing cosines make the �ow �eld reversible. The maximum value of u
given by the above equation is 1m=s and the selected CFL number is 1.0. Thus, the time-step
�t equals (1=nx) s, where nx is the number of cells in the x-direction. Additionally, spatially
periodic conditions are assumed to apply at the domain boundaries, and the time period, T,
of the �ow is set equal to 2.0 s.
As the �ow is reversible, the initial circle of Fluid A should be reformed at its original

location when t=T . Any di�erences between the initial and the �nal con�gurations of this
�uid are due to errors caused by inaccuracies in the interface tracking techniques. These errors
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can be quanti�ed using the following L1 error norm:

‖F‖L1 =
∑
i; j
�A(i; j)|F (i; j)�nal − F (i; j)initial| (53)

where �A(i; j) is the cell area, F (i; j)�nal is the �nal volume fraction, and F
(i; j)
initial is the initial volume

fraction, all for cell (i; j). One measure of the order of these volume tracking techniques is
presented in the form of a ‘grid convergence rate’ [47, 48], de�ned as

Grid Convergence Rate=
ln(‖F‖L1 ;�ne=‖F‖L1 ; coarse)
ln(nx; coarse=nx;�ne)

(54)

where the subscripts �ne and coarse refer to simulations conducted with higher and lower
mesh resolutions, respectively.

6.1.2. Results. The evolution of the interface on a uniform 128× 128 mesh is displayed as
interface segment plots in Figure 13. From t=0:5 s onward, the severity of the deformation
is such that the volume tracking implementation is unable to correctly resolve the thin strands
of drawn �uid, which instead appear as droplets. At t=2:0 s, when the original circle should
be reformed, a misshapen circle is observed.
Results obtained with the PLIC volume tracking method proposed in this paper were

compared to those of Rider and Kothe [19]. They use trapezoid advection to evolve the F �eld
and an error minimization method [16, 25] to calculate the interface segment orientation, n̂. The
errors in reforming the circle at t=T are listed in Table I for uniform 32×32; 64×64; 128×128;
256× 256, and 384× 384 meshes. Both PLIC volume tracking methods have only limited
success at simulating the extremely complex topological changes on the three coarsest grids,
as evidenced by the relatively high L1 error norms and low grid convergence rates. Limitations
in the interface reconstruction technique are largely responsible for this poor performance in
the case of the proposed method. Recall that, for the proposed method, interface segments
are oriented in a two-step process, in which a least-squares approximation to

*
∇F is used

to calculate an initial n̂, based on which the circle-�t technique calculates the �nal n̂. On
the relatively coarse meshes (32× 32; 64× 64; 128× 128), when the stretched �uid regions
become very thin, they are inadequately resolved for the

*
∇F calculations. Thus, a highly

inaccurate initial n̂ is sometimes obtained, which in turn can lead the circle-�t technique to
either choose incorrect neighbours or else fail in locating two suitable neighbours. In either
case, the interface segments are misoriented.
Results for the 256× 256 and 384× 384 meshes are signi�cantly better: low L1 error norms

and second-order grid convergence rates are observed in Table I. These results, together with
the excellent results obtained in the other three (simpler) pure advection tests [41, 42], demon-
strate the accuracy of the volume fraction advection and interface reconstruction techniques
that form the core of the proposed method.

6.2. Static drop

This test case demonstrates the e�cacy of the surface-tension-derived pressure adjustments
discussed in Section 5.2.1. Variations of this test case have been used by several researchers
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Figure 13. Interface segment plots obtained in the pure advection test problem.

Table I. L1 error norms and order (grid convergence rates) for the pure advection problem.

322 Mesh Order 642 Mesh Order 1282 Mesh Order 2562 Mesh Order 3842 Mesh

Proposed 2:00× 10−2 0.96 1:03× 10−2 1.14 4:66× 10−3 2.26 9:70× 10−4 2.67 3:29× 10−4

method
Rider and 1:96× 10−2 0.81 1:12× 10−2 0.91 5:95× 10−3 — — — —
Kothe [19]

[28–30, 35]. The emphasis in this subsection is on evaluations of the accuracy of the curvature
calculation and the ability of the proposed method to maintain a circular interface, under
physically steady-state conditions.
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6.2.1. Test description. The dimensions of the calculation domain are 1m× 1m, and water
is contained in a circular region centred in the middle of the domain. The radius of this
circular region is 0.24m, so the interface curvature equals 4:167m−1. Outside of this region,
the calculation domain is �lled with air. The �uid properties are as follows: �air = 1:205 kg=m

3,
�water=998 kg=m

3, �air=1:808× 10−5 N-s=m2, �water=1:003× 10−3 N-s=m2, and �=0:0728N=m,
where � is the surface tension coe�cient. Gravitational acceleration is zero, and steady-state
conditions prevail in the physical problem.
In order to gauge the e�ectiveness of the circle-�t technique speci�cally, the simulations

are repeated using an alternate curvature calculation in place of the circle-�t technique. In
this alternate technique, which is based on the work of Williams et al. [30], curvatures are
calculated from the gradients of a smoothed volume fraction �eld. In fact, most available
volume tracking methods, including those of Aleinov and Puckett [45], Kothe [15], and
Rudman [29], use this approach or closely related approaches.
Williams et al. [30] use a radially symmetric, eighth-degree kernel, K8, as the basis for

smoothing the F �eld. The unit normal to the interface is calculated from the smoothed volume
fraction �eld, F̃ , as follows:

n̂=
*
∇ F̃=|

*
∇ F̃ | (55)

The curvature is calculated from the divergence of the unit normal [12]

�=−*
∇ : n̂ (56)

In the next subsection, Equations (55) and (56) will be used as an alternate means to calculate
n̂ and �, respectively. This approach will be referred to as the K8 kernel technique. When n̂
and � are determined via the proposed circle-�t technique, the method will be referred to as
the circle-�t technique.
The static drop simulations are conducted on a uniform mesh of 40× 40 cells with a

constant time-step of 0.1 s. This time-step was chosen after numerous trials with di�erent
values, because it is small enough to ensure stable and convergent solutions at each time-
step, it produces solutions that are essentially insensitive to further re�nement of �t, and does
not entail excessive computational costs. The simulations were continued for 100 s in order
to test the ability of each technique to sustain a static, or near-static, equilibrium. For the K8
kernel technique, the radius of support was set at 0.2m.

6.2.2. Results. Plots of the maximum, minimum, and average values of the interface cur-
vature versus time are presented in Figure 14 for the circle-�t technique. The solid hori-
zontal line indicates the analytic curvature for this circle, �=4:167m−1. The dashed line
indicates the length-weighted average curvature, ��, for the PLIC representation of the interface,
calculated as

��=

{∑
(i; j)
l(i; j)�(i; j)

}/ ∑
(i; j)
l(i; j) (57)

In this equation, the summations are done over all cells in the calculation domain: It should
be noted that in cells without the interface, the segment length is l(i; j) = 0. As the curvature is
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Figure 14. Curvatures obtained using the circle-�t technique in the static drop test problem.

calculated independently for each segment, the curvatures about the circumference of the re-
constructed circle vary. The range of this variation is indicated in Figure 14 by the maximum
and minimum segment curvatures at each time.
As shown in Figure 14, the curvatures computed by the circle-�t technique display

oscillatory behaviour in time. These oscillations decay with time. In addition, the spread
between the maximum and minimum curvatures is quite large, approximately equal to 15%
of the analytic value of the curvature. The length-weighted average curvatures, however, are
close to the analytic curvature, with an error, after 100 s, of about 1.1%. The same simulation
conducted on a coarser 20× 20 mesh [41] gives the same range of curvatures and a smaller
average curvature error, of about 0.025%. The increase in the error in predictions of the
average curvature as the mesh is re�ned, and the corresponding lack of improvement in the
curvature spread, indicates that the proposed circle-�t technique cannot be used for curvature
calculations of high accuracy: It is only able to reduce the errors in the curvature calculations
with grid re�nement until they are within a certain minimum radius of convergence about the
exact value of curvature.
The increasing error as the mesh is re�ned seems to result from the decreasing distance

between the three segment-midpoints that are used to perform the circle �t (see Section 3.4).
As these three midpoints get closer together, the circle �t becomes more sensitive to any
inaccuracies in the locations of the segments and the resultant segment-midpoints, which is
re�ected in greater variations in the calculated curvatures. Several attempts were made in this
work to improve the accuracy of the circle-�t technique by smoothing or by incorporating
additional, more distant midpoints into the calculation. While these changes initially improved
the results, over time the solutions degraded and became much worse than those produced
with the original circle-�t technique. In fact, one of the main strengths of the proposed circle-
�t technique is that its results remain bounded throughout the simulation, unlike the results
from the K8 kernel technique, as will be demonstrated next.
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Figure 15. Curvatures obtained using the K8 kernel technique in the static drop test problem.

Figure 16. Interface segment plots for the static drop test problem, obtained using a uniform 20× 20
mesh at t=100 s: (a) proposed circle-�t technique; and (b) K8 kernel technique.

Consider the plots in Figure 15 that present results produced using the K8 kernel technique.
At t=0 s, the error in the average curvature is only 0.013%, which is much smaller than the
initial curvature error in Figure 14. By the end of the simulation, however, this error increases
to 19%. In addition, while the spread between the maximum and minimum curvature values is
initially small, it eventually grows to more than 125% of the analytic value of the curvature.
Also consider the interface segment plots in Figure 16, generated on the 20× 20 mesh at

t=100 s. In Figure 16(a), the results from the proposed circle-�t technique show a relatively
smooth circle, that closely matches the initial circle at t=0 s. However, with the K8 kernel
technique, as shown by the results given in Figure 16(b), the interface is disjointed and a
double layer of segments has begun to form, due to the parasitic currents generated by bad
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curvature calculations and the resultant numerical imbalances between the surface tension
and pressure forces. The fact that the average curvature for this segment con�guration, at
t=100 s, is still close to the analytic value of the curvature is indicative of the disconnection
that smoothing produces between the actual F �eld and the curvature.
Thus, the ability of the proposed circle-�t technique to provide accurate static drop

simulations is shown to be superior to that of the K8 kernel technique. Although it is unable
to provide high-accuracy curvatures, the circle-�t technique produces reasonable curvature
values and excellent results in the context of interface �delity and suppression of parasitic
currents. As the curvatures are calculated locally, using three neighbouring segments, the
circle-�t technique responds immediately to local interface conditions, and thus prevents
interface disruptions. In contrast, smoothing techniques, such as the K8 kernel technique,
provide superior calculations of curvature initially, but they promote the growth of parasitic
currents and, therefore, produce unacceptably large errors at later times in the simulations.

6.3. Oscillating bubble

Numerical simulations of a planar two-dimensional bubble undergoing oscillations, due to
surface tension and an initial perturbation, have been conducted by Fyfe et al. [8], using
a moving-mesh method. Both the �uids, inside and outside the bubble, are assumed to be
inviscid. Thus, in theory, the oscillations should continue inde�nitely, with a constant period
and amplitude. To check the accuracy of their numerical simulations, Fyfe et al. [8] modi�ed
a linear theory derived by Rayleigh [49] for small amplitude oscillations of cylindrical jets.
With this linear theory, they were able to obtain an analytic value for the period of the
oscillations to which they could compare the period yielded by their numerical simulations.
Numerical results obtained with the proposed PLIC volume tracking method are compared

here to those of Fyfe et al. [8] and also their analytic solution based on the theory put forward
by Rayleigh [49].

6.3.1. Test description. The bubble is located in a 0:001m× 0:001m box, with no-slip and
impermeability conditions at the walls. The initial shape of the bubble is given in polar
coordinates by

r= a+ � cos(2�) (58)

where the origin of the polar coordinate system is at the centre of the box, a is the
unperturbed radius of the bubble and � is the amplitude of the initial perturbation. For this
system, a=1:25× 10−4 m and �=2:5× 10−5 m. As the horizontal and vertical lines through
the centre of the bubble are symmetry lines, and assuming that they are symmetry lines in the
numerical simulations too, only one-quarter of the system domain is modelled. Additionally,
gravitational e�ects are absent and �=0:03N=m. To simulate essentially inviscid �ow, the
�uid viscosities are set to 10−50 N-s=m2.
Two sets of �uid densities are employed to match the runs of Fyfe et al. [8]. In the

�rst set, the bubble �uid has a density of 2000 kg=m3 and the external �uid has a density of
1000 kg=m3, giving a density ratio of 2:1. In the second set, the densities are 820 kg=m3 inside
the bubble and 1:26 kg=m3 outside, yielding a density ratio of 650:1. The grid sizes and time-
steps used for the simulation of the 2:1 density ratio �ows are listed in Table II; the same
grids are used for the 650:1 �ows, but with time-steps half of those listed in Table II. Linear
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Table II. Grid sizes and time-steps for the oscillating
bubble test problem, with 2:1 density ratio.

nx ny �t (s)

10 10 1:0× 10−4

20 20 2:5× 10−5

40 40 6:25× 10−6

60 60 2:75× 10−6

80 80 1:5625× 10−6

theory [8, 49] yields the following predictions of the period of oscillation: 1:134× 10−3 s for
the case in which the density ratio is 2:1; and 5:931× 10−4 s for the case with a density ratio
of 650:1.
In addition to comparing the results yielded by the proposed volume tracking method to the

linear theory and numerical results of Fyfe et al. [8], the following subsection examines the
e�ect of changing the neighbour selection criterion for the circle-�t technique. In the proposed
method, as was discussed in Section 3.4, neighbour selection is based on a mixed selection
criterion. The criterion is mixed in the sense that it is based both on the volume fractions,
as represented by Ftest in Equation (31), and on the angles made by the lines connecting the
reference segment to its neighbour segments, as measured by 	 in Equation (30): It requires
that the neighbours that minimize 	=

√
Ftest be chosen. Two other neighbour selection criteria

were tested: neighbour selection based on maximizing Ftest, which is referred to as the F
selection criterion; and neighbour selection that leads to the minimization of 	, which is
referred to as the angle selection criterion.

6.3.2. Results. Plots of the F =0:5 contour of the oscillating bubble are displayed in
Figure 17. These results were obtained with the mixed selection criterion, for the 2:1 density
ratio test case, and a uniform 80× 80 grid. These plots are of the F =0:5 contour with the
full domain shown, not just the quadrant that was used as the computational domain. These
oscillations are qualitatively correct, although a decrease in the amplitude of the oscillations
is apparent. At the end of the full simulation, at t=0:01 s, the bubble mass changed by less
than 2:3× 10−7%, showing the excellent mass conservation property of the proposed volume
tracking method.
The decaying amplitude of the bubble oscillations is better observed in Figure 18, where the

rightmost point on the interface is plotted versus time. The amplitude steadily decreases, but
the period of oscillation remains approximately constant. As the �ow is inviscid,
the amplitude should be constant. Thus, its decay indicates that numerical dissipation oc-
curs due to discretization errors in the �nite volume method (note that the hybrid di�erence
scheme was used) and also inaccuracies in the volume tracking model (most likely in the
curvature calculations). Fyfe et al. [8] noted similar decay of the amplitude of the oscillations
in their simulations with a moving-mesh method.
When the simulations were repeated employing the F selection criterion, the results were

very similar to those obtained with the mixed criterion (Figure 18). When the
angle selection criterion was used, however, very poor performance was observed: with a
40× 40 uniform mesh, the simulations were unable to sustain the oscillations; only about
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Figure 17. Bubble oscillations obtained with the mixed selection criterion and a uniform 80× 80 mesh.

Figure 18. Position of the rightmost point on the interface of the oscillating bubble with 2:1 density
ratio, obtained with the mixed selection criterion on a uniform 80× 80 mesh.

one-and-a-half oscillations were completed in a discernible manner, before they damped down
to levels that were essentially similar to numerical noise; and when the computational mesh
was re�ned, this performance worsened. These bad results with the angle selection criterion
are due to inappropriate neighbour selections, which create large non-physical variations in
the curvature, producing many local minima and maxima. In turn, these large curvature
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Figure 19. Position of the rightmost point on the interface of the oscillating bubble with 650:1 density
ratio, obtained with the mixed selection criterion on a uniform 80× 80 mesh.

variations generate additional, high-frequency oscillations that tend to dampen the main bubble
oscillation. Consequently, the angle criterion cannot produce reliable results and, thus, was
not considered further.
To check whether the placement of the domain boundaries in�uences the oscillation periods

yielded by the numerical simulations, additional computations were conducted in which the
domain size was doubled in the x and y directions, for the test case with the 2:1 density
ratio. In order to maintain the same mesh resolution, nx and ny were also doubled from
the values listed in Table II. The numerical results obtained with this larger domain di�ered
insigni�cantly from those obtained with the smaller domain [41]. Thus, results obtained with
the smaller domain were considered adequate for comparisons with the linear theory, in which
the domain boundaries are absent.
Now the oscillating bubble for the test case with a 650:1 density ratio is considered.

Such high-density-ratio systems have typically proven quite troublesome for volume tracking
methods, producing large force imbalances near the interface in some previous numerical
formulations (see, for example, the work of Kothe et al. [35]). These di�culties, however,
have not been experienced with the proposed method, due to the use of staggered forces
and pressure adjustments. A plot of the bubble oscillations for this 650:1 density ratio test
case, modelled using the mixed selection criterion from t=0 to 0.005 s on a uniform 80× 80
mesh, is shown in Figure 19. The amplitude decay in the numerical simulations of this high
density test case is considerably smaller than that shown in Figure 18 for the test case with
the smaller density ratio.
In Figure 20, plots of the periods of oscillation versus nx and ny are given for the test

case with the 650:1 density ratio. Only the mixed criterion was used for neighbour selection
in this case. The proposed method performs much better than does the moving-mesh method
of Fyfe et al. [8], who presented results for only one computational grid. Note, however, the
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Figure 20. Periods of the oscillating bubble with 650:1 density ratio.

movement of the numerical results away from the linear theory results as the mesh is re�ned,
although the relative di�erence in these results is only about 3.5% on the 80× 80 mesh.
This discrepancy between the numerical and analytic results may be due to the presence of
non-linear e�ects in this test case, which are neglected in the linear theory. On the average,
however, the agreement between the results produced by the proposed numerical method and
the linear theory is quite encouraging, for what is a di�cult surface-tension-driven test case
that is not commonly used to test volume tracking methods.

6.4. Meniscus between two parallel plates

In this section, simulations of a two-dimensional meniscus formed between two in�nite,
vertical, parallel plates, in a water–air system, are presented. The contact angle requirement
at the wall generates surface tension forces that drive the �uid �ow and deform the two-�uid
interface so that it makes the proper angle with the wall. Ultimately, an equilibrium state with
the proper meniscus shape should be attained.

6.4.1. Analytic description of the meniscus and other test details. The meniscus formed
between two in�nite, vertical, parallel plates when the �uids are in static equilibrium is
illustrated in Figure 21(a). In the �gure, Hm is the height of the bottom of the meniscus
with respect to the free surface outside the plates; Wm is the horizontal distance between the
plates; and �c is the steady-state contact angle between the water–air interface and the plate at
each end. An analytic description of the meniscus is desirable as it would permit quanti�cation
of the errors in the �nal meniscus shape produced by the numerical simulations. Brie�y, a
di�erential equation that satis�es the contact angle requirement was derived [41] following
the mathematical model of this problem given by Batchelor [34]. An iterative algorithm and
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Figure 21. Meniscus formed between two in�nite, vertical, parallel plates: (a) problem schematic;
and (b) initial con�guration and system parameters used in the simulations.

a fourth-order Runge–Kutta method (with 100 000 steps) was used to solve this di�erential
equation numerically, and the iterations were continued until the value of the contact angle
was converged to twelve signi�cant �gures [41]. For the purposes of this test case, this highly
accurate numerical solution and the corresponding curvatures are considered as ‘exact’, and
it is referred to in subsequent subsections as the analytic meniscus solution.
To quantify the accuracy of the computations of the meniscus using the proposed PLIC

volume tracking method, two measures of error are used when essentially steady-state
conditions prevail. The �rst is an area-weighted volume fraction error de�ned as follows:

Volume Fraction Error=

{∑
(i; j)
�A(i; j)|F (i; j) − F (i; j)analytic|

}/
(XL×YL) (59)

where the summation is performed over every cell in the domain and (XL×YL) is the area
of the computational domain. Fanalytic is the volume fraction �eld derived from the analytic
meniscus solution such that∑

(i; j)
�A(i; j)F (i; j)analytic =

∑
(i; j)
�A(i; j)F (i; j) (60)

Equation (60) is based on the requirement that the analytic solution possess the same total
area (or mass) of water as the numerical solution, in order to ensure that these solutions
are indeed comparable, with the assumption that the numerical solution does not experience
signi�cant mass loss.
The second measure of error is a length-weighted curvature error, de�ned as follows:

Curvature Error=

{∑
(i; j)
l(i; j)|(�(i; j) − �(i; j)analytic)=�

(i; j)
analytic|

}/ ∑
(i; j)
l(i; j) (61)

where l(i; j) is the length of the interface segment in cell (i; j), and �(i; j)analytic is the analytic value
of curvature evaluated at the x-location of the midpoint of the interface segment for cell (i; j).
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Table III. Grid sizes and time-steps used in the meniscus simulations.

nx ny �t (s)

10 30 1:0× 10−4

20 60 5:0× 10−5

30 90 2:0× 10−5

Figure 22. Plots of the interface segments in the meniscus simulations,
obtained with a 30× 90 mesh with �c=10◦.

The initial con�guration of the interface is shown in Figure 21(b), along with the system
parameters used in the simulations. For computational e�ciency, only the region from the left
plate to the mid-plane between the plates is included in the computational domain. Thus, the
right boundary of the computational domain is assumed to be a symmetry boundary, while the
other three boundaries are modelled as solid walls, with no-slip and impermeability conditions.
The height of the initially �at interface, ylevel, is set based on the requirement that at steady-
state conditions, the contact angle, �c, should be accommodated with a reasonable amount of
water at the bottom of the computational domain. Based on many initial trial simulations, the
following values of ylevel were found to be satisfactory: for �c¡90◦, ylevel = 7:0832× 10−4 m;
otherwise, ylevel =YL− 7:0832× 10−4 m. The computations were conducted on three uniform
meshes: details of these meshes and the corresponding time-steps are given in
Table III. In all simulations, a total run time of t=1:0 s produced essentially steady-state
solutions.
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Figure 23. Volume fraction errors in the meniscus simulations.

6.4.2. Results. The computed evolution of the interface is presented as interface segment
plots in Figure 22, for the 30× 90 mesh with �c=10◦. These plots show the full meniscus, by
mirroring the computational domain across its right symmetry boundary. At t=0 s, the contact
angle is imposed at the vertical walls, according to the treatment described in Section 4.2.
As a result, the segments adjacent to the walls experience very high curvatures, which in
turn generate large upward surface tension forces. From t=0 to 0.003 s, negative curvatures
cause the interface to rise rapidly near the wall, while positive curvatures away from the wall
force the interface down. Indeed, the sudden imposition of the contact angle produces such a
strong reaction in the water that it climbs high up the walls (see the plot for t=0:01 s) and
does not fully drain back down until about t=0:030 s. Thereafter, small oscillations in the
interface were observed that gradually decayed with time. These oscillations were extremely
small (essentially negligible) by t=0:5 s, but the dynamic simulations were run to t=1:0 s
to ensure essentially steady-state conditions. For the simulation shown in Figure 23, after
1.0 s, the change in the mass of water (compared to its initial value) caused by numerical
inaccuracies was only 1:05× 10−7%.
The meniscus formation is simulated for four steady-state contact angles, �c=10◦, 45◦,

135◦, and 170◦. In Figure 23, the volume fraction errors (when essentially steady-state
conditions have been reached) are plotted versus nx for each of the four aforementioned
steady-state contact angles (using the meshes described in Table III). The volume fraction
errors presented in Figure 23 are time-averaged values from t=0:9 to 1.0 s, though the
errors are essentially time-invariant at this stage. Most of the errors fall below 10−4, which is
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Figure 24. Curvature errors in the meniscus simulations.

equivalent to an average error of less than 0.01% in the F value of every cell in the domain.
Also note that the less severe contact angles, �c=45◦ and 135◦, result in smaller volume
fraction errors. In general, the errors decrease as the mesh is re�ned, except for �c=10◦ on
the 30× 90 mesh.
Essentially steady-state curvature errors computed using the three meshes described in

Table III are plotted versus nx in Figure 24. In this case, the error always decreases as
the mesh is re�ned. On the 30× 90 mesh, represented by the rightmost points in the plot,
the curvature error for each �c is less than 0.01, which is equivalent to a length-averaged
curvature error of less than 1%.
The relatively low errors in Figures 23 and 24, plus the physically plausible interface

evolution depicted in Figure 22, demonstrate that the proposed contact angle treatment is
valid and accurate, at least with respect to the steady-state conditions, as is the numerical
model for the surface tension forces.

7. CONCLUSION

A volume tracking method based on a piecewise-linear interface representation has been
developed for the simulation of two-�uid �ows. This method is based on several new or
modi�ed techniques, including a multidimensional advection technique, a circle-�t technique
for orienting the interface segments and calculating curvature, and a surface tension model
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tied to the interface reconstruction. In addition, staggered body forces and pressure adjust-
ments for improving numerical force balances, and thus inhibiting parasitic currents, have
been developed.
Four test problems were presented to demonstrate the capabilities of the proposed method.

The �rst of these test problems involved pure advection and demonstrated that the proposed
method is capable of simulating two-�uid �ows involving complex interface deformations. The
other three test problems, pertaining to a static drop, an oscillating bubble, and a meniscus,
introduced the additional complexity of surface tension modelling. While it was found that
curvatures of high accuracy could not be computed in the static drop problem using the circle-
�t technique, the predicted curvatures were reasonable and the overall simulations remained
stable, unlike the simulations conducted with the K8 kernel. The accuracy of the proposed
method was also demonstrated by the essentially constant periods observed for the oscillating
bubble problem, and the low volume fraction and curvature errors produced in the meniscus
simulations.
Improvements of the proposed circle-�t technique (Sections 3.4.1 and 3.4.2) and surface

tension model (Section 4) may be possible by incorporating some of the ideas contained in
the works of Ginzburg and Wittum [50], on the representation of the interface using spline
interpolants, and Renardy and Renardy [51], on a parabolic reconstruction of surface tension
(PROST). Furthermore, with regard to implementation of the surface-tension-derived pressure
adjustments described in Section 5.2.1, it would be useful to review the treatment of pressure
gradients at the interface proposed by Popinet and Zaleski [52] and also the recent work of
Shirani et al. [53] on pressure calculations based on interface location (PCIL).
In order to simulate additional practical �ows, the proposed two-dimensional FVM

implementation of the volume tracking method would have to be extended to two-dimensional
axisymmetric and three-dimensional formulations. For the three-dimensional formulation,
extensive modi�cations would be required, but guidance can be obtained from existing three-
dimensional formulations [25, 35, 48, 54]. The interface in each cell would be represented by
a plane, rather than a line segment. Thus, the circle-�t technique would, in principle, be
modi�ed into a sphere �t technique, in which a sphere is passed through the midpoints of
a reference plane and three neighbour planes. It would also be bene�cial to implement the
proposed volume tracking method in CVFEMs [32, 33], so as to enable simulations in complex
geometries.
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